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An Extension of the Theory of Oscillating 
Cup Viscometers 
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The theory of the fluid motion in the interior of an oscillating or rotating cup 
is reexamined. The quantity of interest in viscometry is the torque exerted by 
the fluis on the sides and rims of the cup. In this paper expressions for the 
torque are obtained for geometries for Which the cup height approaches a 
fluid boundary layer thickness. Interest in such geometries is due to viscosity 
measurements made in mixtures in the critical region where cups of small height 
are used in order to minimize gravity effects. 

KEY WORDS: Asyptotic boundary regions; drag forces; oscillating body 
viscometry. 

1. I N T R O D U C T I O N  

Oscillating systems have been used to measure viscosity of fluids with a 
high degree of accuracy in critical and noncritical fluids [1, 2]. These 
viscometers consist of an axially symmetric body suspended in a fluid or 
containing fluid. The viscosity of the fluid causes a torque on the surface 
of the body which is observed through the decay rate of the amplitude of 
the angular displacement in a oscillating body and the change in the period 
of rotation in a rotating body. 

In this paper our interest is in cup viscometers. A cup viscometer is a 
hollow cylinder with the fluid contained inside. The arrangement is shown 
in Fig. 1 for a partially filled cup. The variable h denotes the height of the 
liquid in partially filled cup or the internal half-height of a filled cup for 
which h = HI2. The region outside is assumed to be a vacuum. If the 
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Fig. 1. A schematic representation of a partially filled oscillating- 

cup viscometer. 

outside region were to contain a fluid the torque on the outside surfaces 
can be included by applying the theory of disk viscometers [3-5] .  

Recently accurate measurements of the viscosity of binary mixtures 
close to the liquid-liquid critical point or consolute point have been made 
using an  oscillating cup viscometer designed to minimize shear gradient 
and frequency effects [6].  A further effect that becomes important is due to 
gravity as the mixture tends to phase separate close to the critical point. A 
design that minimizes gravity effects is a cup for which the internal height 
h is made small, ~< 5 mm, while for stability reasons the radius R is made 
much larger, typically 2-3 cm. The current working equations for the 
torque which relate the viscosity of the fluid to the amplitude decrement or 
period change are valid only for a limited range of values of h (and R) with 
respect to the boundary layer thickness defined by 2 

= (v/COo) 1/2 (1)  

Here v is the kinematic viscosity of the fluid and co o is the frequency of 
oscillation of the cup with the fluid removed. When h becomes small, 
approaching 6 the current theory for working equations becomes invalid. 

A variety of equivalent and exact equations for the torque were con- 
structed by Kestin and Newell [7]  but are all in the form of infinite series. 
Truncated expressions were obtained by Beckwith and Newell [8],  but the 
validity of their results is limited to two regions. These regions, denoted 

2 Definitions of the symbols are given under Nomenclature. 
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The regions in the ~0, ~/0 plane where the formulae of Beckwith and Newell [8], the 
simplified equations with error term (24), and full equations (23) apply. 

small and large cup regions, are shown in Figl 2. The regions of validity are 
defined to be where the error made in truncating the expression for the 
torque is less than 1%. If R remains large with respect to 6, the inter- 
mediate or disallowed region occurs in the region h ~ 6. In a design which 
minimizes gravity effects this is exactly the region of interest. For mixtures 
typically used in consolute point measurements [6]  6 ~ 0 . 5 m m  but can 
approach 1 mm. Consequently any practical design would have h > 6, but 
possibility hi6 < 3.5, which is the limit of the current theory [9].  

The aim of this paper is to obtain closed-form, truncated expressions 
for the torque, denoted by D, in that part of the intermediate region where 
hi6 ~-1 and R/6 is large. Although the system considered is an oscillating 
cup, expressions obtained for the fluid torque also apply to a rotating cup. 

2. EXACT EQUATIONS 

A complete exposition of the equations of motion of an oscillating 
cup is given elsewhere [-7]; here we give a brief summary. After an initial 

840,/ 1/3-6 
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transient of the order of a period the angular displacement c~ of the cup 
as a function of the dimensionless time r = coot is given by 

e(z) = c~(0) e-~~ cos(0z + ~b) (2) 

where 0 = co/co 0 and co is the frequency of oscillation with the fluid present. 
The damping constant A and frequency co are related to the roots 

~=(-A+i)O (3) 

of the characteristic equation 

(~ + Ao) 2 + 1 + D(~) = 0 (4) 

D is the Laplace transform of the torque function and ~ is the transform 
variable corresponding to z. Once D(~) is determined in terms of the 
density and viscosity of the fluid, the decrement and period change are 
simply given by the real and imaginary parts of a root of Eq. (4). 

Kestin and Newell [7] obtained expressions for D(~) by linearizing 
the Navier-Stokes equations and neglecting secondary flow effects. Apart 
from these assumptions they obtain by straightforward techniques an 
expression for D(~) in the form 

l'~ 2/tanh(~l/Zqo ) 32~ ~, 1 12(~m~0)) 
D(~) = - T  \ ~ + 7r2~---~ m=o (2m+ 1)2 ~3 ~ J  (5) 

where {o = R/a, rlo = h/6, I is the moment of inertia of the cup and suspen- 
sion system, and 

1 for a filled cup (6a) 
I '  = =pR4h x 1/2 for a partially filled cup 

is the moment of inertia of the fluid in the cup. 11 and /2 are modified 
Bessel functions and 

( (2m + 1) ~. (6b) 

3. APPROXIMATE EQUATIONS 

The expression (5) for D(~) is not useful since it is contains an infinite 
series. The main contribution of this paper is to partially resum the series 
to obtain an asymptotic series in powers of ~o 1 and exp(-~0).  A simple 
Euler-Maclaurin expansion in powers of ~o I [8 ] yields only the first-order 
term and is not useful in the limit as r/0 approaches 1. 
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We begin the analysis by noting that I~[-  1. In most circumstances I '  
is smaller than I by two decades. Since A is 0(I'/14o) and O= 1 +O(A)  
(see, for example, Ref. 9), it follows that ~ ~ i. When an asymptotic expan- 
sion of II(~m~O)/I2(~m40) for large 40 is made, the second term in Eq. (5) 
becomes the sum of terms of the form 

1 
Sn=~o  n (2m+ 1)2 ~.+ 2 (7) 

m = O  rn 

where we consider n = 1 to 4. It is convenient to introduce the identity 

~m n__~__ n/2( 1+ ~"/2 -- "~m)~-------~m (8) 

and use the result that 522=o (2m + 1) 2= rc2/8 to write 

S. = 4o"~-(" + 2)/2(Ir2/8 + S'./2) (9) 

where 

.+2  (10) 
. . . .  (2m + 1) ~m 

With the definition 

~(.+2)/2_ [-~+ (2t+ 1)2x 2 ] ( n + 2 ) / 2  

f ~ ( t ) -  (2 t+  1) 2 [~+ (2 t+  1) 2 x,-23 ("+2//2 (11) 

where x = 2r/0/~, it is shown in the Appendix that S'n can be written as 

S'~= f~(t) dt+J~,n+J2,~ (12) 
--oo 

where 

i f(o+) fn(Y) 
J1, ,, = ~ ~ 1/zx _ ~ 1 + e _,xc~,2(y_ 1) dy (13) 

The notation used means that the path of integration begins at y = -o% 
encircles the origin once in a positive sense, and returns to the starting 
point. The variable t is related to y by 

t= ( -  1 + ix~/2(1 - y))/2 (14) 

Note that f . ( t )  is analytic in the t-plane except for branch points at 
1 t= -~+_ �89 ~/2. Had the series not been separated according to Eqs. (9) 
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and (10), the analyticity of the resulting form for f . ( t )  would be more 
complicated. J2,. is obtained from J l , .  letting i ~ - i  throughout. 
Straightforward manipulation shows that J z , . = J l , . .  The integral in 
Eq. (12) is calculated by using elementary trigonometric transformations. 

As an aside we note that an identity similar to Eq. (12) gives the 
Abel-Plana formula from which the Euler-Maclaurin formula can be 
obtained [,10]. However, the Euler-Maclaurin formula fails to give all but 
the first term for S'.. The next term in the formula is a power series in t?o 1 
where the coefficients contain higher-order derivatives o f f . ( t )  at t =  _+or 
which all vanish. This indicates that the next term should be O[exp(- t lo)] .  
In Eq. (12) this term is contained in J l , . .  

For even n the path of integration in Eq. (13) can be closed and S. 
calculated exactly. The expressions are 

$ 2 - 8 ( 2 ~  l+~sech2(z/2)  - tanh(z/2) (15a) 

rc2 (1 7 h 2 15-~5 tanh(z/2 ) + w sec (z/2) - 54 -- 8~3~ 4 q'Z 

, ) + g z sinh(z/2) sech 3 (Z/2) ( 15b ) 

where z = 2tlo( m. Asymptotic expansions for large z are 

g2 
& = 8 ~ o  (1 - 3/z) + o(~;~e -~) (16a) 

and 

~2 
$4 - 8(3r 4 (1 - 15/4z) + O(~o4e -z) (16b) 

For odd n an asymptotic series in powers of e x is obtained from J l , .  
by making use of Watson's lemma for loop integrals [- 11 ]. Briefly Watson's 
lemma states that if 

f.(y)..~ ~ an,,.y m-'/2 (17) 
m=O 

as y ~ 0 and Iph(y ) t  <<. ~, then 

I f  (0§ ~ - -m+n/2+l  2~i e~Yfn(y ) dy ~ F ( n / 2 - m )  -1 a .  m Z (18) 
ov m=0 
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as z ~ ~ and Iph(z)l < n/2. A complete exposition of Watson's lemma is 
given in Ref. 11. To apply the lemma a large x expansion of the 
denominator in the integrand of Eq. (13) is made. For  n = 1 the following 
expansion is obtained 

J1,1 = --~ (2rc3/z) 1/2 e-Z al, mz -m 
m=O 

V(3/2) 

/ (3/2  - m) 
+ (~3/z)1/2 e-2Z 

x ~, al, m(2Z) -m F(3/2) F(3/2 - m) + 0 ( e -  3Z/zl/2) (19) 
m=0 

where, again, z = {1/2t/0. The first four coefficients are 

al, o= 1, a1,1 = 11/8, 

For n = 3 we obtain 

al, 2 = --159/128, al, 3 = 2865/1024 

2 
J3,1 = - ~ (~3z/2) 1/2 e z a3 ' mz-m 

m=0 

where a3, o = 1 and a3, 1 = 13/4. 
In conclusion, the final results are 

V(5/2) 

F ( 5 / 2 - m )  
+ 0(zl/2 e 22) (20) 

S 1 = ~-3/2~01 2~x/2r/o + J1, 1 (21) 

) $3 = ~-5/2~o3 3~1/2r/0 + J3, 1 (22) 

4. S U M M A R Y  

The torque D(() on the interior of the cup is given by 

1 ' (  2 (tanh(~l/2qo)+ 32~ 3S4/8)) (23) 
D ( ~ ) = T ~  ~ 1/2~,/0 7 ( S , - 3 S 2 / 2 + 3 S 3 / 8 +  

where S n are given by Eqs. (15), (21), and (22). To illustrate this result for 
a cup design for which ~o/> 6, we simplify Eq. (23) and retain in $1 only 
the first series for J3, 1, neglect J3. 1 from $3, and neglect $4. The error E(ff) 
incurred in D(~) is then 

I 'r / 3 
E(~) ~ ~ ~32~o 1~- 1/2(nz) 1/2 e-22..~_ 2~.o 3~- 3/2(22/7r)1/2 e-z  .+_2~a~ 2 

/ 

(24) 
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In Fig. 2 the region for which E(() is 0.1% of D(() is denoted the simplified 
region. For comparison the results obtained by Beckwith and Newell [8], 
denoted small and large cup are reproduced. Note that even with the sim- 
plifications the large cup region has been substantially extended into the 
intermetiate region. The region of validity the full equations is also shown. 

As an aside we note that the large cup region is now also extended 
into the region of smaller values of 40. This is due mainly to retaining the 
term of 0(404 ) in the full equations. Recent viscosity experiments [12] 
using viscometer designs for which t /o-  4-5 but 4o ~ 5 will thus also 
benefit from the above results. 

A P P E N D I X  

The series expression (10) is transformed to integral form by making 
use of the well-known formula [13], 

N 

f(J) = (2i)-11~ cot(Tzt) dt (25) 
j =  N 

where ~ is the closed contour shown in Fig. 3. The contour crosses the 
real-t axis at N + 6  and - N - b ,  where 0 < 6 <  1. We denote by cg 1 and cg 2 

C~ 

I -N-/k 
\,,. 

( -  1 +i~V~x)/2 

(-~ id/2• / 
, /  

/ 
J 

C2 

Fig. 3. The t-plane contour cg for the integral in Eq. (25). 
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the upper and lower parts of cg, then since f(t) is analytic within the 
contour, by Cauchy's theorem, 

f~+~ dt + f~, dt= (26) f(t) �9 f(t) 0 

and 

~N+6 d t _ i  0 f(t) f(t) dt = 

With these expressions, Eq. (25) can be written as 

N N~N6 fi f~ f ( j ) -  f f(t) dt= (2i)-1 cot(~t) f(t) dt 
__ __ 1 - b  4gJ 2 j = - - N  

1 1 
+ ~ f~lf(t) d t -~  f~2f(t) dt 

= f~lf(t)(1 - e  2~it) dt+ f~2f(t)(e2~i'-- 1) dt 

(27) 

In the limit that N--, 0% the integrand vanishes along the arcs of cg 1 and 
qf2 and the only remaining terms are the integrals along the branch cuts. 
These integrals are transformed to the form given in Eq. (13) by making 
the transformation (14). 
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NOMENCLATURE 

D(() 
E(~') 

Torque on the cup, Eq. (5) 
Truncation error term, 

Eq. (24) 
Internal half-height of a 

filled cup or the height 
of the liquid in a par- 
tially filled cup 
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i, 

/.  

J 
i ,  n 

R 
Sn 
s" 
x 

z 

~(T) 

A 

qo 
0 
y 

~o 
P 

r 
co 

coo 

Moment of inertia of cup 
and suspension system 

Moment of inertia of fluid 
inside cup 

Modified Bessel function 
of order n 

Defined in Eq. (13) 
Radius of the cup 
Defined in Eq. (7) 
Defined in Eq. (10) 
Variable 2tt0/rc 
Variable 2r/o~ 1/2 

Angular displacement of 
the cup 

Boundary layer thickness 
Logrithmic decrement 
Laplace transform variable 
Dimensionless height h/6 
Frequency ratio co/co 0 
Kinematic viscosity 
Dimensionless radius R/6 
Density of liquid 
Dimensionless time coot 
Phase angle of oscillation 
Angular frequency of 

oscillation with liquid 
present in cup 

Angular frequency of 
oscillation in a vacuum 
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